Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Environ Chem Eng ; 11(3): 110176, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2325763

ABSTRACT

Although waterborne virus removal may be achieved using separation membrane technologies, such technologies remain largely inefficient at generating virus-free effluents due to the lack of anti-viral reactivity of conventional membrane materials required to deactivating viruses. Here, a stepwise approach towards simultaneous filtration and disinfection of Human Coronavirus 229E (HCoV-229E) in water effluents, is proposed by engineering dry-spun ultrafiltration carbon nanotube (CNT) membranes, coated with anti-viral SnO2 thin films via atomic layer deposition. The thickness and pore size of the engineered CNT membranes were fine-tuned by varying spinnable CNT sheets and their relative orientations on carbon nanofibre (CNF) porous supports to reach thicknesses less than 1 µm and pore size around 28 nm. The nanoscale SnO2 coatings were found to further reduce the pore size down to ∼21 nm and provide more functional groups on the membrane surface to capture the viruses via size exclusion and electrostatic attractions. The synthesized CNT and SnO2 coated CNT membranes were shown to attain a viral removal efficiency above 6.7 log10 against HCoV-229E virus with fast water permeance up to ∼4 × 103 and 3.5 × 103 L.m-2.h-1.bar-1, respectively. Such high performance was achieved by increasing the dry-spun CNT sheets up to 60 layers, orienting successive 30 CNT layers at 45°, and coating 40 nm SnO2 on the synthesized membranes. The current study provides an efficient scalable fabrication scheme to engineer flexible ultrafiltration CNT-based membranes for cost-effective filtration and inactivation of waterborne viruses to outperform the state-of-the-art ultrafiltration membranes.

2.
Process Biochem ; 100: 237-244, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-2290109

ABSTRACT

Nanomaterials have wide-ranging biomedical applications in prevention, treatment and control of diseases. Nanoparticle based vaccines have proven prodigious prophylaxis of various infectious and non-infectious diseases of human and animal concern. Nano-vaccines outnumber the conventional vaccines by virtue of plasticity in physio-chemical properties and ease of administration. The efficacy of nano-based vaccines may be attributed to the improved antigen stability, minimum immuno-toxicity, sustained release, enhanced immunogenicity and the flexibility of physical features of nanoparticles. Based on these, the nano-based vaccines have potential to evoke both cellular and humoral immune responses. Targeted and highly specific immunological pathways required for solid and long lasting immunity may be achieved with specially engineered nano-vaccines. This review presents an insight into the prevention of infectious diseases (of bacterial, viral and parasitic origin) and non-infectious diseases (cancer, auto-immune diseases) using nano-vaccinology. Additionally, key challenges to the effective utilization of nano-vaccines from bench to clinical settings have been highlighted as research domains for future.

3.
J Mol Struct ; 1286: 135604, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2299046

ABSTRACT

Molecular modeling techniques are used to describe the process of interaction between nanotubes and the main structures of the Covid-19 virus: the envelope protein, the main protease, and the Spike glycoprotein. Molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics simulations provide information on the mean squared deviation of atomic positions ​​between 0.5 and 3.0 Å. The Gibbs free energy model and solvent accessible surface area approaches are used. Through the results obtained through molecular dynamics simulations, it is noted that the zig-zag nanotube prefers to interact with E-pro, M-pro, and S-gly, respectively. Molecular couplings and free energy showed that the S-gly active site residues strongly interact with zigzag, chiral, and armchair nanotubes, in this order. The interactions demonstrated in this manuscript may predict some promising candidates for virus antagonists, which may be confirmed through experimental approaches.

4.
Materials Science in Semiconductor Processing ; 158, 2023.
Article in English | Scopus | ID: covidwho-2256143

ABSTRACT

In this work, we have presented a comparative study on Ribavirin (RBV) drug sensing and detection on the pristine and functionalized single-wall carbon nanotubes (f-SWCNTs) by Density Functional Theory (DFT) method. The pristine and metal-doped zigzag (4,0) and (6,0) SWCNTs were first considered for the RBV adsorption. All the probable positions of RBV adsorption were investigated to find which one is energetically favourable. The topology analysis of the Quantum theory of atoms in a molecule (QTAIM) with non-covalent interactions (NCI-RDG), Frontier molecular orbitals (FMO), Density of states (DOS), and non-linear optical (NLO) analysis were carried out to understand the molecular structure, electrical, electronic and optical properties of complexes. The charge analysis indicates that charge transfer is from the adsorbed RBV to the pristine and metal-doped (4,0) and (6,0) SWCNTs. The highest values of adsorption energies for Al-, Si-doped and pristine (4,0) SWCNTs were determined as −34.688, −87.999 and −10.382 kcal/mol, respectively, whereas corresponding values for metal-doped and pristine (6,0) SWCNTs are about −43.592, −20.661 and −12.414 kcal/mol, respectively. The results suggest that those bare and metal-doped (4,0) SWCNTs and (6,0) Si-SWCNTs can serve as promising sensors in practical applications to detect, recognize and carrier RBV drug for its medicinal drug delivery applications. Based on the NLO properties of (6,0) Si-SWCNTs and pristine (6,0) SWCNT (with an acceptable recovery time of 279s and first hyper polarizability value of β = 229.25 × 10−30 cm5 esu−1), those nanotubes may be possible candidates to be used as the optoelectronic sensor for RBV drug. The appropriate short length of nanotubes was obtained. © Elsevier Ltd

5.
J Nanobiotechnology ; 21(1): 69, 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2288660

ABSTRACT

BACKGROUND: The rapid increase in production and application of carbon nanotubes (CNTs) has led to wide public concerns in their potential risks to human health. Single-walled CNTs (SWCNTs), as an extensively applied type of CNTs, have shown strong capacity to induce pulmonary fibrosis in animal models, however, the intrinsic mechanisms remain uncertain. RESULTS: In vivo experiments, we showed that accelerated senescence of alveolar type II epithelial cells (AECIIs) was associated with pulmonary fibrosis in SWCNTs-exposed mice, as well as SWCNTs-induced fibrotic lungs exhibited impaired autophagic flux in AECIIs in a time dependent manner. In vitro, SWCNTs exposure resulted in profound dysfunctions of MLE-12 cells, characterized by impaired autophagic flux and accelerated cellular senescence. Furthermore, the conditioned medium from SWCNTs-exposed MLE-12 cells promoted fibroblast-myofibroblast transdifferentiation (FMT). Additionally, restoration of autophagy flux with rapamycin significantly alleviated SWCNTs-triggered senescence and subsequent FMT whereas inhibiting autophagy using 3-MA aggravated SWCNTs-triggered senescence in MLE-12 cells and FMT. CONCLUSION: SWCNTs trigger senescence of AECIIs by impairing autophagic flux mediated pulmonary fibrosis. The findings raise the possibility of senescence-related cytokines as potential biomarkers for the hazard of CNTs exposure and regulating autophagy as an appealing target to halt CNTs-induced development of pulmonary fibrosis.


Subject(s)
Nanotubes, Carbon , Pulmonary Fibrosis , Humans , Animals , Mice , Nanotubes, Carbon/toxicity , Pulmonary Fibrosis/chemically induced , Alveolar Epithelial Cells , Autophagy , Fibroblasts
6.
Adv Healthc Mater ; : e2203133, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2287263

ABSTRACT

A cytokine storm may be the last attack of various diseases, such as sepsis, cancer, and coronavirus disease 2019, that can be life threatening. Real-time monitoring of cytokines in vivo is helpful for assessing the immune status of patients and providing an early warning of a cytokine storm. In this study, a functional carbon nanotube biointerface-based wearable microneedle patches for real-time monitoring of a cytokine storm in vivo via electrochemical analysis are reported. This wearable system has sensitivity with a detection limit of 0.54 pg mL-1 , high specificity, and 5 days of stability with a coefficient of variation of 4.0%. The system also has a quick response of several hours (1-4 h) to increasing cytokines. This wearable microneedle patch may offer a promising route for real-time biomolecule wearables construction. The patch is also the first reported integrated capture and monitoring system that is capable of real-time measurement of protein markers in interstitial fluid.

7.
Biosens Bioelectron ; 229: 115237, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2273595

ABSTRACT

Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic "VOC fingerprint". Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment.


Subject(s)
Biosensing Techniques , COVID-19 , Volatile Organic Compounds , Humans , COVID-19/diagnosis , Volatile Organic Compounds/chemistry , Environmental Exposure , Surface Plasmon Resonance , Breath Tests/methods
8.
Waste Management ; 155:77-86, 2023.
Article in English | Scopus | ID: covidwho-2246649

ABSTRACT

Inexpensive iron-based catalysts are the most promising catalysts for microwave pyrolysis of waste plastics, especially a large number of disposable medical masks (DMMs) with biological hazards produced by spread of COVID-19. However, most synthesized iron-based catalysts have very low microwave heating efficiency due to the enrichment state of iron. Here, we prepared FeAlOx catalysts using the microwave heating method and found that the microwave heating efficiency of amorphous iron and hematite is very low, indeed, these materials can hardly initiate pyrolysis at room temperature, which limits the application of iron-based catalysts in microwave pyrolysis. By contrast, a mixture of DMMs and low-valent iron oxides produced by hydrogen reduction at 500 °C can be heated by microwaves to temperatures above 900 °C under the same conditions. When the hydrogen reduction temperature was incerased to 800 °C, the content of metallic iron in the catalyst gradually increased from 0.34 to 21.43%, which enhanced the microwave response ability of the catalyst, and decreased the gas content in the pyrolysis product from 78.91 to 70.93 wt%;corresponding hydrogen yield also decreased from 29.03 to 25.02 mmolH2·g-1DMMs. Moreover, the morphology of the deposited solid carbon gradually changed from multi-walled CNTs to bamboo-like CNTs. This study clarifies the pyrolysis mechanism of microwave-assisted iron catalysts and lays a theoretical foundation for their application in microwave pyrolysis. © 2022 Elsevier Ltd

9.
Chem Eng J ; 457: 141260, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2227152

ABSTRACT

Standard clinical care of neonates and the ventilation status of human patients affected with coronavirus disease involves continuous CO2 monitoring. However, existing noninvasive methods are inadequate owing to the rigidity of hard-wired devices, insubstantial gas permeability and high operating temperature. Here, we report a cost-effective transcutaneous CO2 sensing device comprising elastomeric sponges impregnated with oxidized single-walled carbon nanotubes (oxSWCNTs)-based composites. The proposed device features a highly selective CO2 sensing response (detection limit 155 ± 15 ppb), excellent permeability and reliability under a large deformation. A follow-up prospective study not only offers measurement equivalency to existing clinical standards of CO2 monitoring but also provides important additional features. This new modality allowed for skin-to-skin care in neonates and room-temperature CO2 monitoring as compared with clinical standard monitoring system operating at high temperature to substantially enhance the quality for futuristic applications.

10.
New Journal of Chemistry ; 2022.
Article in English | EMBASE | ID: covidwho-2186152

ABSTRACT

The separation of highly pure single-chirality single-walled carbon nanotubes (SWCNTs) is challenging and also in demand due to their intrinsic physical, optical, and electronic properties. The use of single-chirality and their performance characteristics makes them a selective candidate for multifunctional applications and opens a new front in nanotube development. It has previously been reported that SWCNTs can be separated in various ways by employing direct control and post-synthesis approaches. Herein, we review the separation of single-chiralities of SWCNTs on account of simplicity and time/cost effectiveness by using gel chromatography. The most recent progress in the controlled synthesis of SWCNTs is comprehensively reviewed in terms of selective-diameter, single-chirality, and specific geometric shape. The method to achieve the single-chirality of SWCNTs is also highlighted. Besides addressing COVID-19 characteristics, epidemiology, and pathology, we also review the most recent developments in nano-biosensors for the rapid and early detection of COVID-19. Furthermore, the photothermal/bioimaging response of single-chirality is reviewed in order to enhance the cytotoxicity of drugs against cancer cells over simple carbon nanotubes (CNTs). The single-chirality allows for precise imaging (due to efficient absorption and emission) of tumors/blood vessels up to ~10-fold higher by injecting a low dose. We hope this review stimulates further study on single-chirality controlled SWCNTs for practical applications. Copyright © 2023 The Royal Society of Chemistry.

11.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2123769

ABSTRACT

It has been proven that viral infections pose a serious hazard to humans and also affect social health, including morbidity and mental suffering, as illustrated by the COVID-19 pandemic. The early detection and isolation of virally infected people are, thus, required to control the spread of viruses. Due to the outstanding and unparalleled properties of nanomaterials, numerous biosensors were developed for the early detection of viral diseases via sensitive, minimally invasive, and simple procedures. To that aim, viral detection technologies based on carbon nanotubes (CNTs) are being developed as viable alternatives to existing diagnostic approaches. This article summarizes the advancements in CNT-based biosensors since the last decade in the detection of different human viruses, namely, SARS-CoV-2, dengue, influenza, human immunodeficiency virus (HIV), and hepatitis. Finally, the shortcomings and benefits of CNT-based biosensors for the detection of viruses are outlined and discussed.

12.
Physica B Condens Matter ; 648: 414438, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2076593

ABSTRACT

The rapid detection of SARS-CoV-2, the pathogen of the Covid-19 pandemic, is obviously of great importance for stopping the spread of the virus by detecting infected individuals. Here, we report the ab initio analysis results of graphene nanoribbon (GNR) and carbon nanotube (CNT) based SARS-CoV-2 detection sensors which are experimentally demonstrated in the literature. The investigated structures are the realistic molecular models of the sensors that are employing 1-pyrenebutyric acid N-hydroxysuccinimide ester as the antibody linker. Density functional theory in conjunction with non-equilibrium Green's function formalism (DFT-NEGF) is used to obtain the transmission spectra, current-voltage and resistance-voltage characteristics of the sensors before and after the attachment of the SARS-CoV-2 spike protein. The operation mechanism of the GNR and CNT based SARS-CoV-2 sensors are exposed using the transmission spectrum analysis. Moreover, it is observed that GNR based sensor has more definitive detection characteristics compared to its CNT based counterpart.

13.
2022 International Conference on Advancement in Electrical and Electronic Engineering, ICAEEE 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2018775

ABSTRACT

In this paper, a 5G on-body patch has been designed for detecting COVID-19 affected lung. A new material Single Wall Carbon Nanotube (SWCNT) is used to design the patch of the antenna. Copper is used to designing the ground and FR-4 (lossy) is used in the substrate. The antenna has a total thickness of 5.5 mm where the patch thickness is 0.5 mm, the substrate thickness is 4.5 mm, and the ground thickness is 0.5 mm. The total volume (length x width x thickness) of this antenna is 80 mm x 80 mm x 5.5 mm (35200 mm3). For detecting COVID-19, designed two human lung phantom body models such as a COVID-19 affected lung model and a non-affected normal lung model. The patch antenna and all the models were designed in CST Microwave Studio. All the dielectric properties and other valuable parameters of the antenna materials and lung phantom models were collected and used for designing the antenna and phantom lung models. The antenna's return loss (S1,1) is -27.498894 dB, gain is 3.007 dB, VSWR is 1.0880641, directivity is 6.007 dB, resonant frequency is 6.296 GHz, SAR 1.19 W/Kg, bandwidth is 1.8174 GHz and the efficiency is 61% in free space. In this pandemic situation, this antenna can be given a new step for detecting COVID-19 affected lung. © 2022 IEEE.

14.
Beni Suef Univ J Basic Appl Sci ; 11(1): 111, 2022.
Article in English | MEDLINE | ID: covidwho-2009506

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism of coronavirus disease 2019 (COVID-19) which poses a significant threat to public health worldwide. Though there are certain recommended drugs that can cure COVID-19, their therapeutic efficacy is limited. Therefore, the early and rapid detection without compromising the test accuracy is necessary in order to provide an appropriate treatment for the disease suppression. Main body: Nanoparticles (NPs) can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. NPs have been widely applied in a variety of medical applications, including biosensing, drug delivery, antimicrobial treatment, and imaging. Recently, NPs-based biosensors have attracted great interest for their biological activities and specific sensing properties, which allows the detection of analytes such as nucleic acids (DNA or RNA), aptamers, and proteins in clinical samples. Further, the advances of nanotechnologies have enabled the development of miniaturized detection systems for point-of-care biosensors, a new strategy for detecting human viral diseases. Among the various NPs, the specific physicochemical properties of gold NPs (AuNPs) are being widely used in the field of clinical diagnostics. As a result, several AuNP-based colorimetric detection methods have been developed. Short conclusion: The purpose of this review is to provide an overview of the development of AuNPs-based biosensors by virtue of its powerful characteristics as a signal amplifier or enhancer that target pathogenic RNA viruses that provide a reliable and effective strategy for detecting of the existing or newly emerging SARS-CoV-2.

15.
Luminescence ; 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2007090

ABSTRACT

Due to their capacity to immobilize more bioreceptor parts at reduced volumes, nanomaterials have emerged as potential tools for increasing the sensitivity to specific molecules. Furthermore, carbon nanotubes, gold nanoparticles, polymer nanoparticles, semiconductor quantum dots, nanodiamonds, and graphene are among the nanomaterials that are under investigation. Due to the fast development of this field of research, this review summarizes the classification of biosensors using the main receptors and design of biosensors. Numerous studies have concentrated on the manipulation of persistent luminescence nanoparticles (PLNPs) in biosensing, cell tracking, bioimaging, and cancer therapy due to the effective removal of autofluorescence interference from tissues and the ultra-long near-infrared afterglow emission. As luminescence has a unique optical property, it can be detected without constant external illumination, preventing autofluorescence and light dispersion through tissues. These successes have sparked an increasing interest in creating novel PLNP types with the desired superior properties and multiple applications. In this review, we emphasize the most recent developments in biosensing, imaging, and image-guided therapy whilst summarizing the research on synthesis methods, bioapplications, biomembrane modification, and the biosafety of PLNPs. Finally, the remaining issues and difficulties are examined together with prospective future developments in the biomedical application field.

16.
Journal of Drug Delivery Science and Technology ; 74, 2022.
Article in English | EMBASE | ID: covidwho-1996814
17.
Journal of Environmental Chemical Engineering ; 10(4), 2022.
Article in English | Scopus | ID: covidwho-1945561

ABSTRACT

Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. © 2022 Elsevier Ltd.

18.
Chemistryselect ; 7(21):24, 2022.
Article in English | Web of Science | ID: covidwho-1885452

ABSTRACT

Zoonotic infections belong to multiple infectious diseases transferred from animals to humans. Now, the treatment and diagnosis of zoonotic infections are perplexing due to genetic mutations, target site modifications, and multi-drug resistance. Despite their benefits, most diagnostic molecular techniques have certain limits in terms of repeatability and sensitivity, mainly due to the heterogeneity among the diverse family of zoonotic pathogens. Therefore, developing more efficient and cost-effective theranostics tools is the need of the hour to address these concerns. For this purpose, nanotechnology has revolutionized medicine with versatile potential capabilities for diagnosing and treating zoonosis via the targeted and controlled delivery of antimicrobial drugs via binding to the overexpressed infectious macrophages. Massive advancements have been made in fabricating novel nano-based formulations to control zoonosis based on the use of poly(ethylenimine)-conjugated nanomicelles, mannosylated thiolated chitosan (MTC)-coated PM-loaded PLGA NPs, mannose linked thiolated nanocarriers, adjuvanted pDNA hydrogel, arginine-based nanocarriers, quantum dots to treat and diagnose a wide range of zoonotic diseases, including zoonotic influenza, salmonellosis, leishmaniasis, rabies, brucellosis, Lyme Disease, tuberculosis, and other infections caused by West Nile Virus, emerging coronaviruses (SARS, MERS, COVID-19), in a preferentially targeted way. Recently developed anti-pathogen loaded-nanoformulations with enhanced cellular uptake, biocompatibility, and hemocompatibility have shown the ability to cross biological barriers when orally administrated. Therefore, this article reviewed the latest milestones and future growth areas in the field of efficient theranostics platforms to manage zoonotic infections.

19.
Biointerface Research in Applied Chemistry ; 13(1), 2023.
Article in English | Scopus | ID: covidwho-1789943

ABSTRACT

Carbon Nanotube (CNT) has a wide range of applications, including physics, chemistry, and materials sciences. It belongs to the fullerenes (Carbon Allotropes, C60 ) family and is categorized into single-walled carbon nanotubes (SWNTs) or multi-walled carbon nanotubes (MWNTs). CNTs act as analytical tools consisting of useful features for improving the analytical process based on their sorption properties and electronic properties. The performance of modified electrode is determined in terms of sensitivity, linear range, the limit of detection (LOD), the limit of quantitation (LOQ), stability (Km), and the effects of interfering species, e.g., ascorbic acid (AA), uric acid (UA) and acetaminophen (AP). This mini-review article introduces the background of CNTs, principles, and the usage of an enzyme-based electrode and the applications in the medical fields for tissue engineering, drug delivery, cancer, even in SARS-CoV-2 COVID-19. © 2022 by the authors.

20.
Appl Mater Today ; 27: 101473, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1777973

ABSTRACT

The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 µm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL